关于五年级数学期末考试知识点之方程的应用

名言警句摘抄 编辑: http://www.hacktxt.com/

1、关于五年级数学期末考试知识点之方程的应用

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时?,方程才成立?。

12.方程的解

使方程左右两边相等的未知数的值,叫做方程的解。??

如果两个方程的解相同,那么这两个方程叫做同解方程。?

13.方程的同解原理:?

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。?

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:

用方程式去解答应用题求得应用题的未知量的方法。 ?

16.列方程解答应用题的步骤

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种?思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围?:小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

2、五年级数学下册期末考试知识点

五年级数学下册期末考试知识点

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b=(b≠0)。

4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。

5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。

8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

9、最简分数:分子和分母只有公因数1的分数叫做最简分数。

10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。

12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

13、特殊情况下的最大公因数和最小公倍数:

①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。

14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。

15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。

3、五年级期末考试数学知识点

数学便是理科的基础,如果数学不好的人,理科一定不好。接下来,就和小编一起学习五年级期末考试数学知识点,希望能对大家有所帮助。

五年级数学期中小结:

数与代数

1.像0,1,2,3,4,5,6……这样的数是自然数。最小的自然数是0,没有最大的自然数,所有的自然数都是整数,整数不全是自然数。

2.像-3,-2,-1,0,1,2,3,……这样的数是整数。(注:整数包括自然数)

3.倍数和因数:倍数和因数是相互依存的。如:4×5=20,就可以说20是4和5的倍数,4和5是20的因数。

判断题或填空题易出。如:4×5=20,4是因数,20是倍数,这是错误的。

一个数的倍数有无数个,倍数的个数是无限的,而因数的个数是有限的。

一个数最大的因数和最小的倍数都是它本身。

4.找因数:找一个数的因数,一对一对有序地找,就不会重复和遗漏。一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。1的因数只有1个,就是1。

如:36的因数有:1,36,2,18,3,12,4,9,6

5.找倍数:从1倍开始有序地找,一个数没有最大的倍数,最小的倍数是它本身。

例:一个数最大的因数与最小的倍数是18,这个数是( 18 )。

6.奇数和偶数:

6.奇数和偶数:

是2的倍数的数叫偶数,特征是:个位上是0,2,4,6,8。如:2,4,6,8等等。

不是2的倍数的数叫奇数。特征是:个位上是1,3,5,7,9。如:1,3,33,99等等。

7.质数:一个数只有1和它本身两个因数,这个数叫质数。如:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97等。

8.合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。合数至少有3个因数。如:4,6,8,9,10,12,14,15,16,18,20等。

注意:1既不是质数也不是合数。

例:(1)最小的质数是2,最小的合数是4,最小的奇数1,最小的偶数是0。

(2)1、3、5、7、19、29、49、65、51当中是质数的有(3,5,7,19,29 )。

(3)两个都是质数的连续自然数是:2,3。既是偶数又是质数的是:2。两个质数的乘积是合数。

例题:下面几个判断题都是错误的。

(1)一个自然数不是质数就是合数。(1既不是质数也不是合数)

(2)所有的奇数都是质数。

(3)所有的偶数都是合数。

9.按一个数的因数分,自然数可以分为:质数、合数和1三类。

按一个数的奇偶性来分,自然数可以分为(奇数和偶数)两类。(0是最小的偶数,暂不研究)

10.(翻杯子、渡船、开关灯……)经过偶数次变化,与开始状态相同;经过奇数次变化,与开始状态相反。

11.2,3,5的倍数特征:

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数都是5的倍数。

各个数位上数字之和是3的倍数,这个数就是3的倍数。是9的倍数的数一定是3的倍数,但3的倍数不一定是9的倍数。

12.数的奇偶性:

偶数+偶数=偶数 奇数+奇数=偶数

偶数+奇数=奇数

13.分数单位:把单位“1”平均分成若干份,表示这样的1份的分数叫分数单位。十八分之五的分数单位是十八分之一。

14.分子小于分母的分数是真分数,真分数﹤1

分子大于或等于分母的分数是假分数,假分数≥1

带分数是由整数和一个真分数组成,带分数>1

假分数化成带分数的方法:分子除以分母,商为分数的整数部分,分母不变,余数为分子。

带分数化成假分数的方法:分母不变,假分数的分母乘整数部分加原分子作分子。

整数化成假分数:分母乘以整数做分子。例:1等于2除以2。

4、五年级数学期末考试知识点之简易方程

数学的学习在人们的生活中已经越来普遍,而生活中到处都充满着数学问题。接下来,就和小编一起复习五年级数学期末考试知识点。

1、表示相等关系的式子叫做等式。2、含有未知数的等式是方程。3、方程一定是等式;等式不一定是方程。等式>方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

5、使方程左右两边相等的未知数的值叫做方程的解。

6、求方程中未知数的过程,叫做解方程。7、检验格式:60-4x=20解4x=60-204x=40x=10检验:把x=10代入原方程,左边=60-4×10=20,右边=20,左边=右边,所以,x=10是原方程的解.检验:方程左边=60-4×10=20=方程右边所以,x=10是方程的解

8、解方程时常用的关系式:

一个加数=和-另一个加数减数=被减数-差被减数=减数+差

一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数

9、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

10、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

11、列方程解应用题的思路:a、审题并弄懂题目的已知条件和所求问题。b、理清题目的等量关系。c、设未知数,一般是把所求的数用x表示。d、根据等量关系列出方程e、解方程f、检验g、作答。注意:解完方程,要养成检验的好习惯。

科学的学习方法和合理的复习资料能帮助大家更好的学好数学这门课程。

5、猜你喜欢: